Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808861

RESUMO

Autophagy is a conserved process of cellular self-digestion that promotes survival during nutrient stress. In yeast, methionine starvation is sufficient to induce autophagy. One pathway of autophagy induction is governed by the SEACIT complex, which regulates TORC1 activity in response to amino acids through the Rag GTPases Gtr1 and Gtr2. However, the precise mechanism by which SEACIT senses amino acids and regulates TORC1 signaling remains incompletely understood. Here, we identify the conserved 5'-3' RNA exonuclease Xrn1 as a surprising and novel regulator of TORC1 activity in response to methionine starvation. This role of Xrn1 is dependent on its catalytic activity, but not on degradation of any specific class of mRNAs. Instead, Xrn1 modulates the nucleotide-binding state of the Gtr1/2 complex, which is critical for its interaction with and activation of TORC1. This work identifies a critical role for Xrn1 in nutrient sensing and growth control that extends beyond its canonical housekeeping function in RNA degradation and indicates an avenue for RNA metabolism to function in amino acid signaling into TORC1.

2.
PLoS Genet ; 19(5): e1010774, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216416

RESUMO

Pbp1 (poly(A)-binding protein-binding protein 1) is a cytoplasmic stress granule marker that is capable of forming condensates that function in the negative regulation of TORC1 signaling under respiratory conditions. Polyglutamine expansions in its mammalian ortholog ataxin-2 lead to spinocerebellar dysfunction due to toxic protein aggregation. Here, we show that loss of Pbp1 in S. cerevisiae leads to decreased amounts of mRNAs and mitochondrial proteins which are targets of Puf3, a member of the PUF (Pumilio and FBF) family of RNA-binding proteins. We found that Pbp1 supports the translation of Puf3-target mRNAs in respiratory conditions, such as those involved in the assembly of cytochrome c oxidase and subunits of mitochondrial ribosomes. We further show that Pbp1 and Puf3 interact through their respective low complexity domains, which is required for Puf3-target mRNA translation. Our findings reveal a key role for Pbp1-containing assemblies in enabling the translation of mRNAs critical for mitochondrial biogenesis and respiration. They may further explain prior associations of Pbp1/ataxin-2 with RNA, stress granule biology, mitochondrial function, and neuronal health.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ataxina-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biogênese de Organelas , Proteínas de Ligação a RNA/metabolismo , Mamíferos/genética , Proteínas de Transporte/genética
3.
Environ Pollut ; 316(Pt 2): 120541, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336177

RESUMO

Wildlife species are often used as bioindicators to evaluate the extent and severity of environmental contamination and the effectiveness of remediation practices. A common approach for investigating population- or community-level impacts on bioindicators compares demographic parameter estimates (e.g., population size or density) between sites that were subjected to different levels of contamination. However, the traditional analytical method used in such studies is nonspatial capture-recapture, which results in conclusions about potential relationships between demographics and contaminants being inferred indirectly. Here, we extend this comparative approach to the spatially explicit framework, allowing direct estimation of said relationships and comparisons between study areas, by applying spatial capture-recapture (SCR) models to bioindicator (deer mice [Peromyscus spp.]) detection data from two study areas that were subjected to different industrial activities and remediation practices. Bioindicator density differed by 178% between the neighboring study areas, and the area with the highest soil concentrations of polychlorinated biphenyls, chromium, and zinc had the highest bioindicator density. Under the traditional nonspatial approach, we might have concluded that soil chemical levels had negligible influences on demographics. However, by modeling density as a spatial function of select chemical concentrations using SCR models, we found strong support for a positive relationship between density and soil chromium concentrations in one study area (ß = 0.82), which was not masked by or associated with habitat-related metrics. To obtain reliable inferences about potential effects of environmental contamination on bioindicator demographics, we contend that a comparative spatially explicit approach using SCR ought to become standard.


Assuntos
Biomarcadores Ambientais , Solo , Animais , Animais Selvagens , Densidade Demográfica , Cromo
4.
Mol Cell ; 82(1): 60-74.e5, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995509

RESUMO

Acetyl-CoA is a key intermediate situated at the intersection of many metabolic pathways. The reliance of histone acetylation on acetyl-CoA enables the coordination of gene expression with metabolic state. Abundant acetyl-CoA has been linked to the activation of genes involved in cell growth or tumorigenesis through histone acetylation. However, the role of histone acetylation in transcription under low levels of acetyl-CoA remains poorly understood. Here, we use a yeast starvation model to observe the dramatic alteration in the global occupancy of histone acetylation following carbon starvation; the location of histone acetylation marks shifts from growth-promoting genes to gluconeogenic and fat metabolism genes. This reallocation is mediated by both the histone deacetylase Rpd3p and the acetyltransferase Gcn5p, a component of the SAGA transcriptional coactivator. Our findings reveal an unexpected switch in the specificity of histone acetylation to promote pathways that generate acetyl-CoA for oxidation when acetyl-CoA is limiting.


Assuntos
Gluconeogênese , Glucose/deficiência , Histonas/metabolismo , Metabolismo dos Lipídeos , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Metabolismo dos Lipídeos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transativadores/metabolismo
5.
Cell Rep ; 34(10): 108825, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33691096

RESUMO

N6-methyladenosine (m6A) is a conserved ribonucleoside modification that regulates many facets of RNA metabolism. Using quantitative mass spectrometry, we find that the universally conserved tandem adenosines at the 3' end of 18S rRNA, thought to be constitutively di-methylated (m62A), are also mono-methylated (m6A). Although present at substoichiometric amounts, m6A at these positions increases significantly in response to sulfur starvation in yeast cells and mammalian cell lines. Combining yeast genetics and ribosome profiling, we provide evidence to suggest that m6A-bearing ribosomes carry out translation distinctly from m62A-bearing ribosomes, featuring a striking specificity for sulfur metabolism genes. Our work thus reveals methylation multiplicity as a mechanism to regulate translation.


Assuntos
Adenosina/metabolismo , RNA Ribossômico 18S/metabolismo , Adenosina/análogos & derivados , Animais , Linhagem Celular , Meios de Cultura/química , Humanos , Metionina/deficiência , Metionina/metabolismo , Metilação , Camundongos , Mutagênese Sítio-Dirigida , Biossíntese de Proteínas/genética , RNA Ribossômico 18S/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
Nat Commun ; 12(1): 57, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397945

RESUMO

Autophagy catabolizes cellular constituents to promote survival during nutrient deprivation. Yet, a metabolic comprehension of this recycling operation, despite its crucial importance, remains incomplete. Here, we uncover a specific metabolic function of autophagy that exquisitely adjusts cellular metabolism according to nitrogen availability in the budding yeast Saccharomyces cerevisiae. Autophagy enables metabolic plasticity to promote glutamate and aspartate synthesis, which empowers nitrogen-starved cells to replenish their nitrogen currency and sustain macromolecule synthesis. Our findings provide critical insights into the metabolic basis by which autophagy recycles cellular components and may also have important implications in understanding the role of autophagy in diseases such as cancer.


Assuntos
Ácido Aspártico/biossíntese , Autofagia , Ácido Glutâmico/biossíntese , Nitrogênio/deficiência , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Compostos de Amônio/metabolismo , Autofagia/efeitos dos fármacos , Glutamato Sintase (NADH)/metabolismo , Substâncias Macromoleculares/metabolismo , Modelos Biológicos , Mutação/genética , Ácidos Nucleicos/biossíntese , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimo/farmacologia
7.
PLoS One ; 15(9): e0238870, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32941472

RESUMO

Monitoring the ecological impacts of environmental pollution and the effectiveness of remediation efforts requires identifying relationships between contaminants and the disruption of biological processes in populations, communities, or ecosystems. Wildlife are useful bioindicators, but traditional comparative experimental approaches rely on a staunch and typically unverifiable assumption that, in the absence of contaminants, reference and contaminated sites would support the same densities of bioindicators, thereby inferring direct causation from indirect data. We demonstrate the utility of spatial capture-recapture (SCR) models for overcoming these issues, testing if community density of common small mammal bioindicators was directly influenced by soil chemical concentrations. By modeling density as an inhomogeneous Poisson point process, we found evidence for an inverse spatial relationship between Peromyscus density and soil mercury concentrations, but not other chemicals, such as polychlorinated biphenyls, at a site formerly occupied by a nuclear reactor. Although the coefficient point estimate supported Peromyscus density being lower where mercury concentrations were higher (ß = -0.44), the 95% confidence interval overlapped zero, suggesting no effect was also compatible with our data. Estimated density from the most parsimonious model (2.88 mice/ha; 95% CI = 1.63-5.08), which did not support a density-chemical relationship, was within the range of reported densities for Peromyscus that did not inhabit contaminated sites elsewhere. Environmental pollution remains a global threat to biodiversity and ecosystem and human health, and our study provides an illustrative example of the utility of SCR models for investigating the effects that chemicals may have on wildlife bioindicator populations and communities.


Assuntos
Monitorização de Parâmetros Ecológicos/métodos , Biomarcadores Ambientais , Mamíferos/fisiologia , Modelos Biológicos , Poluentes do Solo/análise , Solo/química , Distribuição Animal , Animais , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Ecossistema , Poluição Ambiental/análise , Recuperação e Remediação Ambiental , Feminino , Masculino , Camundongos , Densidade Demográfica , Poluentes do Solo/farmacologia , Análise Espacial
8.
Cell ; 177(3): 697-710.e17, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30982600

RESUMO

Yeast ataxin-2, also known as Pbp1 (polyA binding protein-binding protein 1), is an intrinsically disordered protein implicated in stress granule formation, RNA biology, and neurodegenerative disease. To understand the endogenous function of this protein, we identify Pbp1 as a dedicated regulator of TORC1 signaling and autophagy under conditions that require mitochondrial respiration. Pbp1 binds to TORC1 specifically during respiratory growth, but utilizes an additional methionine-rich, low complexity (LC) region to inhibit TORC1. This LC region causes phase separation, forms reversible fibrils, and enables self-association into assemblies required for TORC1 inhibition. Mutants that weaken phase separation in vitro exhibit reduced capacity to inhibit TORC1 and induce autophagy. Loss of Pbp1 leads to mitochondrial dysfunction and reduced fitness during nutritional stress. Thus, Pbp1 forms a condensate in response to respiratory status to regulate TORC1 signaling.


Assuntos
Proteínas de Transporte/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Autofagia/efeitos dos fármacos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Metionina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
9.
Cell ; 177(3): 711-721.e8, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30982603

RESUMO

Yeast ataxin-2, also known as Pbp1, senses the activity state of mitochondria in order to regulate TORC1. A domain of Pbp1 required to adapt cells to mitochondrial activity is of low sequence complexity. The low-complexity (LC) domain of Pbp1 forms labile, cross-ß polymers that facilitate phase transition of the protein into liquid-like or gel-like states. Phase transition for other LC domains is reliant upon widely distributed aromatic amino acids. In place of tyrosine or phenylalanine residues prototypically used for phase separation, Pbp1 contains 24 similarly disposed methionine residues. Here, we show that the Pbp1 methionine residues are sensitive to hydrogen peroxide (H2O2)-mediated oxidation in vitro and in living cells. Methionine oxidation melts Pbp1 liquid-like droplets in a manner reversed by methionine sulfoxide reductase enzymes. These observations explain how reversible formation of labile polymers by the Pbp1 LC domain enables the protein to function as a sensor of cellular redox state.


Assuntos
Proteínas de Transporte/metabolismo , Metionina/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Peróxido de Hidrogênio/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metionina/metabolismo , Metionina Sulfóxido Redutases/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutagênese Sítio-Dirigida , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Transição de Fase , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
Mol Cell ; 73(6): 1115-1126.e6, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30772176

RESUMO

Dysregulation of chromatin methylation is associated with defects in cellular differentiation as well as a variety of cancers. How cells regulate the opposing activities of histone methyltransferase and demethylase enzymes to set the methylation status of the epigenome for proper control of gene expression and metabolism remains poorly understood. Here, we show that loss of methylation of the major phosphatase PP2A in response to methionine starvation activates the demethylation of histones through hyperphosphorylation of specific demethylase enzymes. In parallel, this regulatory mechanism enables cells to preserve SAM by increasing SAH to limit SAM consumption by methyltransferase enzymes. Mutants lacking the PP2A methyltransferase or the effector H3K36 demethylase Rph1 exhibit elevated SAM levels and are dependent on cysteine due to reduced capacity to sink the methyl groups of SAM. Therefore, PP2A directs the methylation status of histones by regulating the phosphorylation status of histone demethylase enzymes in response to SAM levels.


Assuntos
Cromatina/metabolismo , Metilação de DNA , Histonas/metabolismo , Proteína Fosfatase 2/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Cromatina/genética , Remoção de Radical Alquila , Regulação Fúngica da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Metilação , Mutação , Ligação Proteica , Proteína Fosfatase 2/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Ann Work Expo Health ; 62(6): 721-732, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29985976

RESUMO

Bitumen is classed as possibly carcinogenic to humans according to the International Agency for Research on Cancer. Data on individual exposure to bitumen fumes is therefore required to highlight the exposing situations and develop methods to prevent them. The Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA) and the French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS) have both developed methods to measure individual exposure. The objective of this study was to determine a conversion factor to allow interconversion of data acquired by the two methods. To develop this conversion factor, comparative laboratory and workplace tests were performed according to both the IFA method (No. 6305) and the INRS method (MetroPol M-2). The amounts of organic material collected on the filters and XAD-2 beds were compared. The results revealed differences between the sampling and analytical methods that could be linked to sampler design, extraction solvent, and the detection method used. The total quantification returned by the two methods-the sum of the masses quantified on filter and XAD-2 bed for each sampler-were correlated in both controlled and real-life tests. A conversion equation was therefore determined, based on field tests: CIFA = 1.76 CINRS ± 0.39 (R2 = 0.99) that is applicable to total quantification data. This formula can be applied to data acquired by the two institutes to increase the number of data points available on exposure to bitumen fumes in various conditions, and thus increase the statistical power of studies into occupational prevention.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Gases/análise , Hidrocarbonetos/análise , Exposição Ocupacional/análise , Carcinógenos/análise , Monitoramento Ambiental/normas , França , Alemanha , Hidrocarbonetos Policíclicos Aromáticos/análise , Manejo de Espécimes , Local de Trabalho
12.
Toxicol Lett ; 287: 122-130, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29410274

RESUMO

Road construction workers are simultaneously exposed to two carcinogens; solar ultraviolet (UV-S) radiation and polycyclic aromatic hydrocarbons (PAHs) in bitumen emissions. The combined exposure may lead to photogenotoxicity and enhanced PAH skin permeation rates. Skin permeation rates (J) for selected PAHs in a mixture (PAH-mix) or in bitumen fume condensate (BFC) with and without UV-S co-exposures were measured with in vitro flow-through diffusion cells mounted with human viable skin and results compared. Possible biomarkers were explored. Js were greater with UV-S for naphthalene, anthracene, and pyrene in BFC (0.08-0.1 ng/cm2/h) compared to without (0.02-0.26 ng/cm2/h). This was true for anthracene, pyrene, and chrysene in the PAH-mix. Naphthalene and benzo(a)pyrene (BaP) in the PAH-mix had greater Js without (0.97-13.01 ng/cm2/h) compared to with UV-S (0.40-6.35 ng/cm2/h). Time until permeation (Tlags) in the PAH-mix were generally shorter compared to the BFC, and they ranged from 1 to 13 h. The vehicle matrix could potentially be the reason for this discrepancy as BFC contains additional not identified substances. Qualitative interpretation of p53 suggested a dose-response with UV-S, and somewhat with the co-exposures. MMP1, p65 and cKIT were not exploitable. Although not statistically different, PAHs permeate human viable skin faster with simultaneous exposures to UV.


Assuntos
Hidrocarbonetos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Absorção Cutânea/efeitos da radiação , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidade , Biomarcadores/metabolismo , Difusão , Cultura em Câmaras de Difusão , Relação Dose-Resposta à Radiação , Humanos , Hidrocarbonetos/metabolismo , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Naftalenos/metabolismo , Naftalenos/toxicidade , Permeabilidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Pele/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
13.
Nat Chem Biol ; 13(11): 1179-1186, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28920930

RESUMO

The GATOR1 (SEACIT) complex consisting of Iml1-Npr2-Npr3 inhibits target of rapamycin complex 1 (TORC1) in response to amino acid insufficiency. In glucose medium, Saccharomyces cerevisiae mutants lacking the function of this complex grow poorly in the absence of amino acid supplementation, despite showing hallmarks of increased TORC1 signaling. Such mutants sense that they are amino acid replete and thus repress metabolic activities that are important for achieving this state. We found that npr2Δ mutants have defective mitochondrial tricarboxylic acid (TCA)-cycle activity and retrograde response. Supplementation with glutamine, and especially aspartate, which are nitrogen-containing forms of TCA-cycle intermediates, rescues growth of npr2Δ mutants. These amino acids are then consumed in biosynthetic pathways that require nitrogen to support proliferative metabolism. Our findings revealed that negative regulators of TORC1, such as GATOR1 (SEACIT), regulate the cataplerotic synthesis of these amino acids from the TCA cycle, in tune with the amino acid and nitrogen status of cells.


Assuntos
Ciclo do Ácido Cítrico , Mitocôndrias/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Aspártico/metabolismo , Glutamina/metabolismo , Complexos Multiproteicos/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nitrogênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Mol Cell ; 66(2): 180-193.e8, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28366644

RESUMO

S-adenosylmethionine (SAM) is the methyl donor for biological methylation modifications that regulate protein and nucleic acid functions. Here, we show that methylation of a phospholipid, phosphatidylethanolamine (PE), is a major consumer of SAM. The induction of phospholipid biosynthetic genes is accompanied by induction of the enzyme that hydrolyzes S-adenosylhomocysteine (SAH), a product and inhibitor of methyltransferases. Beyond its function for the synthesis of phosphatidylcholine (PC), the methylation of PE facilitates the turnover of SAM for the synthesis of cysteine and glutathione through transsulfuration. Strikingly, cells that lack PE methylation accumulate SAM, which leads to hypermethylation of histones and the major phosphatase PP2A, dependency on cysteine, and sensitivity to oxidative stress. Without PE methylation, particular sites on histones then become methyl sinks to enable the conversion of SAM to SAH. These findings reveal an unforeseen metabolic function for phospholipid and histone methylation intrinsic to the life of a cell.


Assuntos
Histonas/metabolismo , Fosfatidiletanolaminas/metabolismo , Processamento de Proteína Pós-Traducional , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Cisteína/metabolismo , Metabolismo Energético , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Lisina/metabolismo , Metilação , Mutação , Estresse Oxidativo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolamina N-Metiltransferase/genética , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , S-Adenosil-Homocisteína/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Transcrição Gênica
15.
Ann Occup Hyg ; 60(1): 101-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26400870

RESUMO

Benzene is frequently used to extract collected bitumen fumes from personal sampler substrates. However, this solvent is particularly dangerous because of its carcinogenicity (group 1 of the International Agency for Research on Cancer classification). Therefore, to prevent the exposure of laboratory technicians to benzene during the fume extraction step from samplers, a compromise had to be found to identify a less toxic solvent with the same extraction capacity. To compare the extraction capacities of selected solvents, bitumen fumes were generated in the laboratory from three different batches of road surfacing bitumen collected on dedicated bitumen fume samplers. The samplers were then extracted by benzene and the solvents tested. Of 11 selected solvents less toxic than benzene and used in studies on bitumen and bitumen fume analyses, n-hexane and n-heptane were identified as alternatives to benzene. In particular, the results demonstrated that n-heptane was the best candidate solvent for benzene replacement, due to its extraction efficiency comparable to benzene for the three bitumen fumes tested and its low toxicity, which is highly compatible with benzene replacement.


Assuntos
Benzeno , Exposição por Inalação/prevenção & controle , Exposição Ocupacional , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Filtração , Heptanos , Hexanos , Humanos , Hidrocarbonetos , Pessoal de Laboratório , Solventes/análise
16.
Sci Signal ; 7(356): ra120, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25515537

RESUMO

Cells must be capable of switching between growth and autophagy in unpredictable nutrient environments. The conserved Npr2 protein complex (comprising Iml1, Npr2, and Npr3; also called SEACIT) inhibits target of rapamycin complex 1 (TORC1) kinase signaling, which inhibits autophagy in nutrient-rich conditions. In yeast cultured in media with nutrient limitations that promote autophagy and inhibit growth, loss of Npr2 enables cells to bypass autophagy and proliferate. We determined that Npr2-deficient yeast had a metabolic state distinct from that of wild-type yeast when grown in minimal media containing ammonium as a nitrogen source and a nonfermentable carbon source (lactate). Unlike wild-type yeast, which accumulated glutamine, Npr2-deficient yeast metabolized glutamine into nitrogen-containing metabolites and maintained a high concentration of S-adenosyl methionine (SAM). Moreover, in wild-type yeast grown in these nutrient-limited conditions, supplementation with methionine stimulated glutamine consumption for synthesis of nitrogenous metabolites, demonstrating integration of a sulfur-containing amino acid cue and nitrogen utilization. These data revealed the metabolic basis by which the Npr2 complex regulates cellular homeostasis and demonstrated a key function for TORC1 in regulating the synthesis and utilization of glutamine as a nitrogen source.


Assuntos
Glutamina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Compostos de Amônio/metabolismo , Glutamina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , S-Adenosilmetionina/genética , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
17.
Autophagy ; 10(2): 386-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24362312

RESUMO

Cells respond to the deprivation of nutrients by inducing autophagy. However, mechanisms through which cells coordinately regulate autophagy with metabolic state remain incompletely understood. We previously observed that prototrophic strains of yeast induce autophagy upon switch from a rich to minimal medium in the absence of severe nitrogen starvation. We determined that the sulfur-containing amino acid methionine and its downstream metabolite S-adenosylmethionine (SAM) are sufficient to strongly inhibit such autophagy. These metabolites function through Ppm1, an enzyme that methylates the catalytic subunit of the protein phosphatase PP2A. As such, methionine and SAM act as critical signals of amino acid sufficiency that reciprocally regulate autophagy and cell growth by modulating the methylation status of PP2A.


Assuntos
Autofagia/fisiologia , Metionina/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Metilação , S-Adenosilmetionina
18.
Cell ; 154(2): 403-15, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23870128

RESUMO

Autophagy is a process of cellular self-digestion induced by various forms of starvation. Although nitrogen deficit is a common trigger, some yeast cells induce autophagy upon switch from a rich to minimal media without nitrogen starvation. We show that the amino acid methionine is sufficient to inhibit such non-nitrogen-starvation (NNS)-induced autophagy. Methionine boosts synthesis of the methyl donor, S-adenosylmethionine (SAM). SAM inhibits autophagy and promotes growth through the action of the methyltransferase Ppm1p, which modifies the catalytic subunit of PP2A in tune with SAM levels. Methylated PP2A promotes dephosphorylation of Npr2p, a component of a conserved complex that regulates NNS autophagy and other growth-related processes. Thus, methionine and SAM levels represent a critical gauge of amino acid availability that is sensed via the methylation of PP2A to reciprocally regulate cell growth and autophagy.


Assuntos
Autofagia , Metionina/metabolismo , Proteína Fosfatase 2/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metilação , Proteínas Metiltransferases/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Cell ; 154(2): 416-29, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23870129

RESUMO

Protein translation is an energetically demanding process that must be regulated in response to changes in nutrient availability. Herein, we report that intracellular methionine and cysteine availability directly controls the thiolation status of wobble-uridine (U34) nucleotides present on lysine, glutamine, or glutamate tRNAs to regulate cellular translational capacity and metabolic homeostasis. tRNA thiolation is important for growth under nutritionally challenging environments and required for efficient translation of genes enriched in lysine, glutamine, and glutamate codons, which are enriched in proteins important for translation and growth-specific processes. tRNA thiolation is downregulated during sulfur starvation in order to decrease sulfur consumption and growth, and its absence leads to a compensatory increase in enzymes involved in methionine, cysteine, and lysine biosynthesis. Thus, tRNA thiolation enables cells to modulate translational capacity according to the availability of sulfur amino acids, establishing a functional significance for this conserved tRNA nucleotide modification in cell growth control.


Assuntos
Aminoácidos Sulfúricos/metabolismo , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Uridina/metabolismo , Regulação para Baixo , RNA de Transferência/química , Saccharomyces cerevisiae/crescimento & desenvolvimento
20.
Mol Cell ; 42(4): 426-37, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21596309

RESUMO

The decision by a cell to enter a round of growth and division must be intimately coordinated with nutrient availability and its metabolic state. These metabolic and nutritional requirements, and the mechanisms by which they induce cell growth and proliferation, remain poorly understood. Herein, we report that acetyl-CoA is the downstream metabolite of carbon sources that represents a critical metabolic signal for growth and proliferation. Upon entry into growth, intracellular acetyl-CoA levels increase substantially and consequently induce the Gcn5p/SAGA-catalyzed acetylation of histones at genes important for growth, thereby enabling their rapid transcription and commitment to growth. Thus, acetyl-CoA functions as a carbon-source rheostat that signals the initiation of the cellular growth program by promoting the acetylation of histones specifically at growth genes.


Assuntos
Acetilcoenzima A/metabolismo , Proliferação de Células , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Acetilação , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...